首页> 外文OA文献 >Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds
【2h】

Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds

机译:整合受生物启发的纳米材料和台式立体光刻技术,用于3D打印的仿生骨软骨支架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.
机译:众所周知,关节炎关节的骨软骨界面很难再生,这是因为其再生能力极差且结构复杂。天然骨软骨组织细胞外基质由许多纳米级有机和无机成分组成。尽管在解决骨软骨缺损方面存在各种组织工程学策略,但是对于在纳米级至微米级表现出仿生线索的组织支架仍然存在局限性。为了解决这个问题,当前的工作集中在3D打印仿生纳米复合支架上,以改善骨软骨组织的再生。为此,已经合成了两种具有生物启发性的纳米材料,它们由(1)骨传导性纳米晶羟基磷灰石(nHA)(骨的主要无机成分)和(2)核-壳聚乳酸-乙醇酸(PLGA)纳米球组成包囊有成软骨转化生长因子β1(TGF-β1)以持续递送。然后,使用新型台式立体光刻3D打印机和纳米墨水(即nHA +纳米球+水凝胶)来制造具有纳米级至微米级结构和时空生物活性因子梯度的多孔且高度互连的骨软骨支架。我们的结果表明,在体外仿生分级3D打印的骨软骨构建物中,人骨髓来源的间充质干细胞的粘附,增殖和骨软骨分化得到了显着改善。当前的工作用来说明纳米墨水和当前的3D打印技术对新型纳米复合水凝胶支架的有效制造的功效。另外,组织特异性生长因子显示出协同作用,导致细胞粘附增加和定向干细胞分化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号